RSA asimetriskās šifrēšanas tiešsaistes datu pārveidotājs


Mūsu pārveidotājs tiešsaistē, kas palīdzēs jums RSA асимметричном šifrējot datus.
Šis pārveidotājs šifrē jūsu tekstu hex, bet дешифрует no hex uz tekstu, atslēgas, vispirms nepieciešams izveidot vai ierakstīt hex, ir arī iespējams, ka būs nepieciešama transformācija no base64 tekstu.

RSA (Rivest-Shamir-Adleman) - tas ir viens no pirmajiem криптосистем ar publisko atslēgu, un plaši izmanto drošu datu pārraides, tādā криптосистеме šifrēšanas atslēga ir atvērts, un atšķiras no atslēgu atšifrēšanu, kas tiek turēta slepenībā (private).
Ar RSA šī asimetrija ir balstīta uz praktisko sarežģītības faktoringa skaņdarbi divām lielām vienkāršiem skaitļiem, "problēma faktoringa", saīsinājums RSA sastāv no uzvārda sākuma burtiem Rona Ривеста, Adi Шамира un Leonarda Адлемана, kuri pirmo reizi publiski aprakstīts algoritms 1978. gadā.
Clifford Kokss, angļu matemātiķis, kurš strādā uz Britu разведывательном pārvaldē valdības komunikācijas (GCHQ), ir izstrādājusi līdzvērtīgu sistēmu 1973. gadā, bet tas nebija рассекречено līdz pat 1997. gadam.

Lietotājs RSA izveido un pēc tam publicē publisko atslēgu, pamatojoties uz divu lielu vienkāršu skaitļu kopā ar papildu vērtību, primes ir jāglabā slepenībā.
Ikviens var izmantot publisko atslēgu, lai šifrētu ziņojumu, bet izmantojot publicēto brīdī metodes, un, ja publiskā atslēga ir pietiekami liela, tikai tas, kurš zina primes, var atšifrēt ziņojumu.
Pārkāpumu RSA šifrēšanas zināms kā problēma RSA, un atklāts ir jautājums, cik tas ir sarežģīti, kā problēma faktoringa.
RSA ir lēns algoritmu, un šī iemesla dēļ tā ir mazāk izmanto tiešu šifrētu lietotāja datus, bet visbiežāk RSA sūta šifrētu publiskās atslēgas šifrēšanas ar simetrisko atslēgu, kas, savukārt, var veikt masveida šifrēšanas darbība-atšifrēšanai uz daudz lielāku ātrumu.

Ваш текст:


Результат шифрования (hex):

Результат расшифрования:

***** Norādiet ключи *****
Размер ключей (mazliet):

Открытый ключ (hex):

Закрытый ключ (hex):

Статус:

Public exponent (hex, F4=0x10001):
P (hex):
Q (hex):
D mod (P-1) (hex):
D mod (Q-1) (hex):
1/Q mod P (hex):